$\qquad$ date $\qquad$ block $\qquad$
Use a table of values to graph each function. Identify the equation for the axis of symmetry, the coordinates of the vertex, and identify whether the vertex is a maximum or a minimum. You'll need to use your own graph paper.

| 1) $y=5+16 x-2 x^{2}$ | 2) $y+2=x^{2}-10 x+25$ |
| :--- | :--- |
|  |  |

Solve the quadratic equations using a method of your choice. Round to the nearest hundredth if necessary.

| 3) $\mathrm{m}^{2}-10 \mathrm{~m}=23$ | 4) $\mathrm{n}^{2}-8 \mathrm{n}=4$ | 5) $3 \mathrm{t}^{2}-7 \mathrm{t}-20=0$ | $6) 0.3 \mathrm{t}^{2}+0.1 \mathrm{t}=0.2$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

State the value of the discriminant. Then determine the number of real roots of the equation.

| 15$) y^{2}-10 \mathrm{y}+25=0$ | 16) $3 \mathrm{~h}^{2}+7 \mathrm{~h}+3=0$ |
| :--- | :--- |
|  |  |

## Write and solve an equation to answer each question below. Write your answer in a complete sentence.

| 17) A rectangular poster has an area of $190 \mathrm{in}^{2}$. | 18) The sum of the squares of two consecutive <br> The height of the poster is 1 in. less than twice its <br> odd numbers is 130 . What are the numbers? <br> width. Find the dimensions of the poster. |
| :--- | :--- |
| 19) A ball is thrown upward from a height of 15 <br> ft with an initial upward velocity of $5 \mathrm{ft} / \mathrm{s}$. Use <br> the formula $h=-16 t^{2}+v t+c$ to find how long it <br> will take for the ball to hit the ground. | 20) A projectile is shot vertically up in the air <br> from ground level. Its distance $h$, in feet, after $t$ <br> seconds is given by $h=96 t-16 t^{2}$. Find the <br> values of $t$ when $h$ is 96 feet. |

